Modifier and Type | Method and Description |
---|---|
MatrixStore<Double> |
ArtificialNeuralNetwork.invoke(Access1D<Double> input) |
Modifier and Type | Method and Description |
---|---|
MatrixStore<N> |
MultiaryFunction.TwiceDifferentiable.getGradient(Access1D<N> point)
The gradient of a scalar field is a vector field that points in the direction of the greatest rate
of increase of the scalar field, and whose magnitude is that rate of increase.
|
MatrixStore<N> |
QuadraticFunction.getGradient(Access1D<N> point) |
MatrixStore<N> |
FirstOrderApproximation.getGradient(Access1D<N> point) |
MatrixStore<N> |
CompoundFunction.getGradient(Access1D<N> point) |
MatrixStore<N> |
SecondOrderApproximation.getGradient(Access1D<N> point) |
MatrixStore<N> |
LinearFunction.getGradient(Access1D<N> point) |
MatrixStore<N> |
ConstantFunction.getGradient(Access1D<N> point) |
MatrixStore<N> |
MultiaryFunction.TwiceDifferentiable.getHessian(Access1D<N> point)
The Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a function.
|
MatrixStore<N> |
QuadraticFunction.getHessian(Access1D<N> point) |
MatrixStore<N> |
FirstOrderApproximation.getHessian(Access1D<N> point) |
MatrixStore<N> |
CompoundFunction.getHessian(Access1D<N> point) |
MatrixStore<N> |
SecondOrderApproximation.getHessian(Access1D<N> point) |
MatrixStore<N> |
LinearFunction.getHessian(Access1D<N> point) |
MatrixStore<N> |
ConstantFunction.getHessian(Access1D<N> point) |
Modifier and Type | Method and Description |
---|---|
static <N extends Number> |
MatrixUtils.hashCode(MatrixStore<N> matrix)
Deprecated.
v47 Use
Access1D#hashCode() instead. |
static <N extends Number> |
MatrixUtils.isNormal(MatrixStore<N> matrix)
Deprecated.
v47
isNormal() |
Modifier and Type | Interface and Description |
---|---|
interface |
DecompositionStore<N extends Number>
Only classes that will act as a delegate to a MatrixDecomposition implementation from this
package should implement this interface.
|
Modifier and Type | Method and Description |
---|---|
MatrixStore<N> |
SingularValue.getD() |
MatrixStore<N> |
Bidiagonal.getD() |
MatrixStore<N> |
Eigenvalue.getD()
The only requirements on [D] are that it should contain the eigenvalues and that [A][V] = [V][D].
|
MatrixStore<N> |
LDL.getD() |
MatrixStore<N> |
Tridiagonal.getD() |
default MatrixStore<ComplexNumber> |
Eigenvalue.getEigenvectors() |
MatrixStore<N> |
Hessenberg.getH() |
MatrixStore<N> |
HermitianEvD.getInverse() |
MatrixStore<N> |
MatrixDecomposition.Solver.getInverse()
The output must be a "right inverse" and a "generalised inverse".
|
MatrixStore<N> |
HermitianEvD.getInverse(PhysicalStore<N> preallocated) |
MatrixStore<N> |
MatrixDecomposition.Solver.getInverse(PhysicalStore<N> preallocated)
Implementiong this method is optional.
|
MatrixStore<N> |
LU.getL() |
default MatrixStore<N> |
Cholesky.getL()
Must implement either
Cholesky.getL() or Cholesky.getR() . |
default MatrixStore<N> |
LDL.getL()
Must implement either
LDL.getL() or LDL.getR() . |
MatrixStore<N> |
Hessenberg.getQ() |
MatrixStore<N> |
QR.getQ() |
MatrixStore<N> |
Tridiagonal.getQ() |
MatrixStore<N> |
SingularValue.getQ1()
If [A] is m-by-n and its rank is r, then:
The first r columns of [Q1] span the column space, range or image of [A].
The last m-r columns of [Q1] span the left nullspace or cokernel of [A].
Calculating the QR decomposition of [A] is a faster alternative.
|
MatrixStore<N> |
Bidiagonal.getQ1() |
MatrixStore<N> |
SingularValue.getQ2()
If [A] is m-by-n and its rank is r, then:
The first r columns of [Q2] span the row space or coimage of [A].
The last n-r columns of [Q2] span the nullspace or kernel of [A].
Calculating the QR decomposition of [A]T is a faster alternative.
|
MatrixStore<N> |
Bidiagonal.getQ2() |
default MatrixStore<N> |
Cholesky.getR()
Must implement either
Cholesky.getL() or Cholesky.getR() . |
MatrixStore<N> |
QR.getR() |
default MatrixStore<N> |
LDL.getR()
Must implement either
LDL.getL() or LDL.getR() . |
MatrixStore<N> |
HermitianEvD.getSolution(Access2D.Collectable<N,? super PhysicalStore<N>> rhs) |
MatrixStore<N> |
MatrixDecomposition.Solver.getSolution(Access2D.Collectable<N,? super PhysicalStore<N>> rhs)
[A][X]=[B] or [this][return]=[rhs]
|
MatrixStore<N> |
HermitianEvD.getSolution(Access2D.Collectable<N,? super PhysicalStore<N>> rhs,
PhysicalStore<N> preallocated) |
MatrixStore<N> |
MatrixDecomposition.Solver.getSolution(Access2D.Collectable<N,? super PhysicalStore<N>> rhs,
PhysicalStore<N> preallocated)
Implementiong this method is optional.
|
MatrixStore<N> |
LU.getU()
http://en.wikipedia.org/wiki/Row_echelon_form
This is the same as [D][U]. |
MatrixStore<N> |
Eigenvalue.getV()
The columns of [V] represent the eigenvectors of [A] in the sense that [A][V] = [V][D].
|
MatrixStore<N> |
HermitianEvD.invert(Access2D<?> original) |
MatrixStore<N> |
HermitianEvD.invert(Access2D<?> original,
PhysicalStore<N> preallocated) |
protected MatrixStore<N> |
HermitianEvD.makeD() |
protected MatrixStore<N> |
HermitianEvD.makeV() |
default MatrixStore<N> |
SingularValue.reconstruct() |
default MatrixStore<N> |
LU.reconstruct() |
default MatrixStore<N> |
Hessenberg.reconstruct() |
default MatrixStore<N> |
Cholesky.reconstruct() |
default MatrixStore<N> |
QR.reconstruct() |
default MatrixStore<N> |
Bidiagonal.reconstruct() |
default MatrixStore<N> |
Eigenvalue.reconstruct() |
default MatrixStore<N> |
LDL.reconstruct() |
default MatrixStore<N> |
Tridiagonal.reconstruct() |
MatrixStore<N> |
MatrixDecomposition.reconstruct() |
static <N extends Number> |
Bidiagonal.reconstruct(Bidiagonal<N> decomposition)
Deprecated.
v48 Use
Bidiagonal.reconstruct() instead |
static <N extends Number> |
Cholesky.reconstruct(Cholesky<N> decomposition)
Deprecated.
v48 Use
Cholesky.reconstruct() instead |
static <N extends Number> |
Eigenvalue.reconstruct(Eigenvalue<N> decomposition)
Deprecated.
v48 Use
Eigenvalue.reconstruct() instead |
static <N extends Number> |
Hessenberg.reconstruct(Hessenberg<N> decomposition)
Deprecated.
v48 Use
Hessenberg.reconstruct() instead |
static <N extends Number> |
LDL.reconstruct(LDL<N> decomposition)
Deprecated.
v48 Use
LDL.reconstruct() instead |
static <N extends Number> |
LU.reconstruct(LU<N> decomposition)
Deprecated.
v48 Use
LU.reconstruct() instead |
static <N extends Number> |
QR.reconstruct(QR<N> decomposition)
Deprecated.
v48 Use
QR.reconstruct() instead |
static <N extends Number> |
SingularValue.reconstruct(SingularValue<N> decomposition)
Deprecated.
v48 Use
SingularValue.reconstruct() instead |
static <N extends Number> |
Tridiagonal.reconstruct(Tridiagonal<N> decomposition) |
MatrixStore<N> |
HermitianEvD.solve(Access2D<?> body,
Access2D<?> rhs) |
MatrixStore<N> |
HermitianEvD.solve(Access2D<?> body,
Access2D<?> rhs,
PhysicalStore<N> preallocated) |
Modifier and Type | Method and Description |
---|---|
default boolean |
MatrixDecomposition.Hermitian.checkAndCompute(MatrixStore<N> matrix)
Deprecated.
v48 Use
#checkAndDecompose(MatrixStore instead |
default boolean |
MatrixDecomposition.Hermitian.checkAndDecompose(MatrixStore<N> matrix)
Absolutely must check if the matrix is hermitian or not.
|
static <N extends Number> |
Bidiagonal.equals(MatrixStore<N> matrix,
Bidiagonal<N> decomposition,
NumberContext context) |
static <N extends Number> |
Cholesky.equals(MatrixStore<N> matrix,
Cholesky<N> decomposition,
NumberContext context) |
static <N extends Number> |
Eigenvalue.equals(MatrixStore<N> matrix,
Eigenvalue<N> decomposition,
NumberContext context) |
static <N extends Number> |
Hessenberg.equals(MatrixStore<N> matrix,
Hessenberg<N> decomposition,
NumberContext context) |
static <N extends Number> |
LDL.equals(MatrixStore<N> matrix,
LDL<N> decomposition,
NumberContext context) |
static <N extends Number> |
LU.equals(MatrixStore<N> matrix,
LU<N> decomposition,
NumberContext context) |
static <N extends Number> |
QR.equals(MatrixStore<N> matrix,
QR<N> decomposition,
NumberContext context) |
static <N extends Number> |
SingularValue.equals(MatrixStore<N> matrix,
SingularValue<N> decomposition,
NumberContext context) |
static <N extends Number> |
Tridiagonal.equals(MatrixStore<N> matrix,
Tridiagonal<N> decomposition,
NumberContext context) |
Modifier and Type | Interface and Description |
---|---|
interface |
PhysicalStore<N extends Number>
PhysicalStore:s, as opposed to MatrixStore:s, are mutable.
|
Modifier and Type | Class and Description |
---|---|
class |
GenericDenseStore<N extends Number & Scalar<N>>
A generic implementation of PhysicalStore.
|
class |
PrimitiveDenseStore
A Double (actually double) implementation of PhysicalStore.
|
class |
RawStore
Uses double[][] internally.
|
class |
SparseStore<N extends Number> |
Modifier and Type | Method and Description |
---|---|
default MatrixStore<N> |
MatrixStore.add(MatrixStore<N> addend) |
MatrixStore<N> |
GenericDenseStore.conjugate() |
MatrixStore<Double> |
PrimitiveDenseStore.conjugate() |
default MatrixStore<N> |
MatrixStore.conjugate()
Returns the conjugate transpose of this matrix.
|
MatrixStore<Double> |
RawStore.get() |
MatrixStore<N> |
GenericDenseStore.get() |
MatrixStore<Double> |
PrimitiveDenseStore.get() |
default MatrixStore<N> |
MatrixStore.get() |
MatrixStore<N> |
MatrixStore.LogicalBuilder.get() |
default MatrixStore<N> |
ElementsSupplier.get() |
default MatrixStore<N> |
MatrixStore.multiply(double scalar) |
MatrixStore<N> |
SparseStore.multiply(double scalar) |
MatrixStore<Double> |
PrimitiveDenseStore.multiply(MatrixStore<Double> right) |
MatrixStore<N> |
GenericDenseStore.multiply(MatrixStore<N> right) |
default MatrixStore<N> |
MatrixStore.multiply(MatrixStore<N> right) |
MatrixStore<N> |
SparseStore.multiply(MatrixStore<N> right) |
default MatrixStore<N> |
MatrixStore.multiply(N scalar) |
MatrixStore<N> |
SparseStore.multiply(N scalar) |
default MatrixStore<N> |
MatrixStore.negate() |
default MatrixStore<N> |
MatrixStore.operateOnAll(UnaryFunction<N> operator) |
default MatrixStore<N> |
MatrixStore.signum() |
default MatrixStore<N> |
MatrixStore.subtract(MatrixStore<N> subtrahend) |
MatrixStore<N> |
GenericDenseStore.transpose() |
MatrixStore<Double> |
PrimitiveDenseStore.transpose() |
default MatrixStore<N> |
MatrixStore.transpose() |
Modifier and Type | Method and Description |
---|---|
MatrixStore.LogicalBuilder<N> |
MatrixStore.LogicalBuilder.above(MatrixStore<N>... upperStore) |
default MatrixStore<N> |
MatrixStore.add(MatrixStore<N> addend) |
MatrixStore.LogicalBuilder<N> |
MatrixStore.LogicalBuilder.below(MatrixStore<N>... lowerStore) |
MatrixStore.LogicalBuilder<N> |
MatrixStore.LogicalBuilder.diagonally(MatrixStore<N>... diagonally) |
default boolean |
MatrixStore.equals(MatrixStore<N> other,
NumberContext context) |
MatrixStore.LogicalBuilder<N> |
MatrixStore.LogicalBuilder.left(MatrixStore<N>... left) |
RawStore |
RawStore.multiply(MatrixStore<Double> right) |
MatrixStore<Double> |
PrimitiveDenseStore.multiply(MatrixStore<Double> right) |
MatrixStore<N> |
GenericDenseStore.multiply(MatrixStore<N> right) |
default MatrixStore<N> |
MatrixStore.multiply(MatrixStore<N> right) |
MatrixStore<N> |
SparseStore.multiply(MatrixStore<N> right) |
default ElementsSupplier<N> |
ElementsSupplier.operateOnMatching(BinaryFunction<N> operator,
MatrixStore<N> right) |
default ElementsSupplier<N> |
ElementsSupplier.operateOnMatching(MatrixStore<N> left,
BinaryFunction<N> operator) |
MatrixStore.LogicalBuilder<N> |
MatrixStore.LogicalBuilder.right(MatrixStore<N>... right) |
default MatrixStore<N> |
MatrixStore.subtract(MatrixStore<N> subtrahend) |
MatrixStore.LogicalBuilder<N> |
MatrixStore.LogicalBuilder.superimpose(int row,
int col,
MatrixStore<N> matrix) |
MatrixStore.LogicalBuilder<N> |
MatrixStore.LogicalBuilder.superimpose(MatrixStore<N> matrix) |
Modifier and Type | Method and Description |
---|---|
MatrixStore<Double> |
AbstractInverter.invert(Access2D<?> original) |
default MatrixStore<N> |
InverterTask.invert(Access2D<?> original)
The output must be a "right inverse" and a "generalised inverse".
|
MatrixStore<N> |
InverterTask.invert(Access2D<?> original,
PhysicalStore<N> preallocated)
Exactly how (if at all) a specific implementation makes use of
preallocated is not
specified by this interface. |
default MatrixStore<N> |
SolverTask.solve(Access2D<?> body,
Access2D<?> rhs)
[A][X]=[B] or [body][return]=[rhs]
|
MatrixStore<N> |
SolverTask.solve(Access2D<?> body,
Access2D<?> rhs,
PhysicalStore<N> preallocated)
Exactly how (if at all) a specific implementation makes use of
preallocated is not
specified by this interface. |
Modifier and Type | Method and Description |
---|---|
DeterminantTask<N> |
DeterminantTask.Factory.make(MatrixStore<N> template) |
InverterTask<N> |
InverterTask.Factory.make(MatrixStore<N> template) |
SolverTask<N> |
SolverTask.Factory.make(MatrixStore<N> templateBody,
MatrixStore<N> templateRHS) |
SolverTask<N> |
SolverTask.Factory.make(MatrixStore<N> templateBody,
MatrixStore<N> templateRHS) |
Modifier and Type | Method and Description |
---|---|
MatrixStore<Double> |
JacobiSolver.solve(Access2D<?> body,
Access2D<?> rhs,
PhysicalStore<Double> current) |
MatrixStore<Double> |
GaussSeidelSolver.solve(Access2D<?> body,
Access2D<?> rhs,
PhysicalStore<Double> current) |
MatrixStore<Double> |
MutableSolver.solve(Access2D<?> body,
Access2D<?> rhs,
PhysicalStore<Double> current) |
MatrixStore<Double> |
ConjugateGradientSolver.solve(Access2D<?> body,
Access2D<?> rhs,
PhysicalStore<Double> preallocated) |
Modifier and Type | Method and Description |
---|---|
static <N extends Number> |
HouseholderReference.make(MatrixStore<N> matrix,
boolean column) |
static <N extends Number> |
HouseholderReference.makeColumn(MatrixStore<N> matrix) |
static <N extends Number> |
HouseholderReference.makeRow(MatrixStore<N> matrix) |
Modifier and Type | Method and Description |
---|---|
protected abstract MatrixStore<Double> |
GenericSolver.extractSolution()
Should be able to feed this to
GenericSolver.evaluateFunction(Access1D) . |
MatrixStore<Double> |
Expression.getAdjustedGradient(Access1D<?> point) |
MatrixStore<Double> |
Expression.getAdjustedHessian() |
Modifier and Type | Method and Description |
---|---|
protected MatrixStore<Double> |
ConvexSolver.extractSolution() |
MatrixStore<Double> |
ConvexSolver.Builder.getAE()
[AE][X] == [BE]
|
MatrixStore<Double> |
ConvexSolver.Builder.getBE()
[AE][X] == [BE]
|
MatrixStore<Double> |
ConvexSolver.Builder.getBI()
[AI][X] <= [BI]
|
MatrixStore<Double> |
ConvexSolver.Builder.getC()
Linear objective: [C]
|
protected MatrixStore<Double> |
ConvexSolver.getMatrixAE() |
protected MatrixStore<Double> |
ConvexSolver.getMatrixBE() |
protected MatrixStore<Double> |
ConvexSolver.getMatrixBI() |
protected MatrixStore<Double> |
ConvexSolver.getMatrixBI(int[] selector) |
protected MatrixStore<Double> |
ConvexSolver.getMatrixC() |
protected MatrixStore<Double> |
ConvexSolver.getSE() |
protected MatrixStore<Double> |
ConvexSolver.getSolutionGeneral(Access2D.Collectable<Double,? super PhysicalStore<Double>> rhs) |
protected MatrixStore<Double> |
ConvexSolver.getSolutionGeneral(Access2D.Collectable<Double,? super PhysicalStore<Double>> rhs,
PhysicalStore<Double> preallocated) |
protected MatrixStore<Double> |
ConvexSolver.getSolutionQ(Access2D.Collectable<Double,? super PhysicalStore<Double>> rhs) |
protected MatrixStore<Double> |
ConvexSolver.getSolutionQ(Access2D.Collectable<Double,? super PhysicalStore<Double>> rhs,
PhysicalStore<Double> preallocated) |
Modifier and Type | Method and Description |
---|---|
ConvexSolver.Builder |
ConvexSolver.Builder.equalities(MatrixStore<Double> mtrxAE,
MatrixStore<Double> mtrxBE) |
ConvexSolver.Builder |
ConvexSolver.Builder.equalities(MatrixStore<Double> mtrxAE,
MatrixStore<Double> mtrxBE) |
static ConvexSolver.Builder |
ConvexSolver.getBuilder(MatrixStore<Double> Q,
MatrixStore<Double> C) |
static ConvexSolver.Builder |
ConvexSolver.getBuilder(MatrixStore<Double> Q,
MatrixStore<Double> C) |
ConvexSolver.Builder |
ConvexSolver.Builder.inequalities(Access2D<Double> mtrxAI,
MatrixStore<Double> mtrxBI) |
ConvexSolver.Builder |
ConvexSolver.Builder.objective(MatrixStore<Double> mtrxC) |
ConvexSolver.Builder |
ConvexSolver.Builder.objective(MatrixStore<Double> mtrxQ,
MatrixStore<Double> mtrxC) |
ConvexSolver.Builder |
ConvexSolver.Builder.objective(MatrixStore<Double> mtrxQ,
MatrixStore<Double> mtrxC) |
Constructor and Description |
---|
Builder(MatrixStore<Double> C) |
Builder(MatrixStore<Double> Q,
MatrixStore<Double> C) |
Builder(MatrixStore<Double> Q,
MatrixStore<Double> C) |
Modifier and Type | Method and Description |
---|---|
protected MatrixStore<Double> |
IntegerSolver.extractSolution() |
protected MatrixStore<Double> |
IntegerSolver.getGradient(Access1D<Double> solution) |
Modifier and Type | Method and Description |
---|---|
MatrixStore<Double> |
LinearSolver.Builder.getAE() |
MatrixStore<Double> |
LinearSolver.Builder.getBE() |
MatrixStore<Double> |
LinearSolver.Builder.getC() |
Modifier and Type | Method and Description |
---|---|
LinearSolver.Builder |
LinearSolver.Builder.equalities(MatrixStore<Double> mtrxAE,
MatrixStore<Double> mtrxBE) |
LinearSolver.Builder |
LinearSolver.Builder.equalities(MatrixStore<Double> mtrxAE,
MatrixStore<Double> mtrxBE) |
static LinearSolver.Builder |
LinearSolver.getBuilder(MatrixStore<Double> C) |
LinearSolver.Builder |
LinearSolver.Builder.objective(MatrixStore<Double> mtrxC) |
Constructor and Description |
---|
Builder(MatrixStore<Double> C) |
Modifier and Type | Method and Description |
---|---|
MatrixStore<ComplexNumber> |
Quaternion.toComplexMatrix() |
MatrixStore<Double> |
Quaternion.toMultiplicationMatrix() |
MatrixStore<Double> |
ComplexNumber.toMultiplicationMatrix() |
MatrixStore<Double> |
Quaternion.toMultiplicationVector() |
MatrixStore<Double> |
ComplexNumber.toMultiplicationVector() |
MatrixStore<Double> |
Quaternion.toRotationMatrix() |
MatrixStore<Double> |
Quaternion.Versor.toRotationMatrix() |
MatrixStore<Double> |
ComplexNumber.toRotationMatrix() |
Modifier and Type | Method and Description |
---|---|
MatrixStore<Double> |
CoordinatedSet.getSamples() |
MatrixStore<Double> |
CoordinatedSet.getSamples(UnaryOperator<PrimitiveSeries> operator) |
Copyright © 2019 Optimatika. All rights reserved.