public final class ConstantFunction<N extends Number> extends Object
MultiaryFunction.Constant<N extends Number,F extends MultiaryFunction.Constant<N,?>>, MultiaryFunction.Convex<N extends Number>, MultiaryFunction.Linear<N extends Number>, MultiaryFunction.Quadratic<N extends Number>, MultiaryFunction.TwiceDifferentiable<N extends Number>
BasicFunction.Differentiable<N extends Number,F extends BasicFunction>, BasicFunction.Integratable<N extends Number,F extends BasicFunction>, BasicFunction.PlainUnary<T,R>
Modifier and Type | Method and Description |
---|---|
int |
arity() |
F |
constant(Number constant) |
protected PhysicalStore.Factory<N,?> |
factory() |
N |
getConstant() |
MatrixStore<N> |
getGradient(Access1D<N> point)
The gradient of a scalar field is a vector field that points in the direction of the greatest rate
of increase of the scalar field, and whose magnitude is that rate of increase.
|
MatrixStore<N> |
getHessian(Access1D<N> point)
The Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a function.
|
Access1D<N> |
getLinearFactors() |
protected Scalar<N> |
getScalarConstant() |
N |
invoke(Access1D<N> arg) |
static ConstantFunction<ComplexNumber> |
makeComplex(int arity) |
static ConstantFunction<ComplexNumber> |
makeComplex(int arity,
Number constant) |
static ConstantFunction<Double> |
makePrimitive(int arity) |
static ConstantFunction<Double> |
makePrimitive(int arity,
Number constant) |
static ConstantFunction<RationalNumber> |
makeRational(int arity) |
static ConstantFunction<RationalNumber> |
makeRational(int arity,
Number constant) |
void |
setConstant(Number constant) |
FirstOrderApproximation<N> |
toFirstOrderApproximation(Access1D<N> arg) |
SecondOrderApproximation<N> |
toSecondOrderApproximation(Access1D<N> arg) |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
andThen
public static ConstantFunction<ComplexNumber> makeComplex(int arity)
public static ConstantFunction<ComplexNumber> makeComplex(int arity, Number constant)
public static ConstantFunction<Double> makePrimitive(int arity)
public static ConstantFunction<Double> makePrimitive(int arity, Number constant)
public static ConstantFunction<RationalNumber> makeRational(int arity)
public static ConstantFunction<RationalNumber> makeRational(int arity, Number constant)
public int arity()
public MatrixStore<N> getGradient(Access1D<N> point)
MultiaryFunction.TwiceDifferentiable
The gradient of a scalar field is a vector field that points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is that rate of increase.
The Jacobian is a generalization of the gradient. Gradients are only defined on scalar-valued functions, but Jacobians are defined on vector- valued functions. When f is real-valued (i.e., f : Rn → R) the derivative Df(x) is a 1 × n matrix, i.e., it is a row vector. Its transpose is called the gradient of the function: ∇f(x) = Df(x)T , which is a (column) vector, i.e., in Rn. Its components are the partial derivatives of f:
The first-order approximation of f at a point x ∈ int dom f can be expressed as (the affine function of z) f(z) = f(x) + ∇f(x)T (z − x).
public MatrixStore<N> getHessian(Access1D<N> point)
MultiaryFunction.TwiceDifferentiable
The Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a function. It describes the local curvature of a function of many variables. The Hessian is the Jacobian of the gradient.
The second-order approximation of f, at or near x, is the quadratic function of z defined by f(z) = f(x) + ∇f(x)T (z − x) + (1/2)(z − x)T ∇2f(x)(z − x)
protected PhysicalStore.Factory<N,?> factory()
public final F constant(Number constant)
constant
in interface MultiaryFunction.Constant<N extends Number,F extends org.ojalgo.function.multiary.AbstractMultiary<N,?>>
public final N getConstant()
getConstant
in interface MultiaryFunction.Constant<N extends Number,F extends org.ojalgo.function.multiary.AbstractMultiary<N,?>>
public Access1D<N> getLinearFactors()
getLinearFactors
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
public final void setConstant(Number constant)
setConstant
in interface MultiaryFunction.Constant<N extends Number,F extends org.ojalgo.function.multiary.AbstractMultiary<N,?>>
public final FirstOrderApproximation<N> toFirstOrderApproximation(Access1D<N> arg)
toFirstOrderApproximation
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
public final SecondOrderApproximation<N> toSecondOrderApproximation(Access1D<N> arg)
toSecondOrderApproximation
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
protected final Scalar<N> getScalarConstant()
Copyright © 2019 Optimatika. All rights reserved.