public final class QuadraticFunction<N extends Number> extends Object implements MultiaryFunction.Quadratic<N>
MultiaryFunction.Constant<N extends Number,F extends MultiaryFunction.Constant<N,?>>, MultiaryFunction.Convex<N extends Number>, MultiaryFunction.Linear<N extends Number>, MultiaryFunction.Quadratic<N extends Number>, MultiaryFunction.TwiceDifferentiable<N extends Number>
BasicFunction.Differentiable<N extends Number,F extends BasicFunction>, BasicFunction.Integratable<N extends Number,F extends BasicFunction>, BasicFunction.PlainUnary<T,R>
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
andThen
public static QuadraticFunction<ComplexNumber> makeComplex(Access2D<? extends Number> factors)
public static QuadraticFunction<ComplexNumber> makeComplex(int arity)
public static QuadraticFunction<Double> makePrimitive(Access2D<? extends Number> factors)
public static QuadraticFunction<Double> makePrimitive(int arity)
public static QuadraticFunction<RationalNumber> makeRational(Access2D<? extends Number> factors)
public static QuadraticFunction<RationalNumber> makeRational(int arity)
public int arity()
arity
in interface MultiaryFunction<N extends Number>
public MatrixStore<N> getGradient(Access1D<N> point)
MultiaryFunction.TwiceDifferentiable
The gradient of a scalar field is a vector field that points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is that rate of increase.
The Jacobian is a generalization of the gradient. Gradients are only defined on scalar-valued functions, but Jacobians are defined on vector- valued functions. When f is real-valued (i.e., f : Rn → R) the derivative Df(x) is a 1 × n matrix, i.e., it is a row vector. Its transpose is called the gradient of the function: ∇f(x) = Df(x)T , which is a (column) vector, i.e., in Rn. Its components are the partial derivatives of f:
The first-order approximation of f at a point x ∈ int dom f can be expressed as (the affine function of z) f(z) = f(x) + ∇f(x)T (z − x).
getGradient
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
public MatrixStore<N> getHessian(Access1D<N> point)
MultiaryFunction.TwiceDifferentiable
The Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a function. It describes the local curvature of a function of many variables. The Hessian is the Jacobian of the gradient.
The second-order approximation of f, at or near x, is the quadratic function of z defined by f(z) = f(x) + ∇f(x)T (z − x) + (1/2)(z − x)T ∇2f(x)(z − x)
getHessian
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
public PhysicalStore<N> quadratic()
quadratic
in interface MultiaryFunction.Quadratic<N extends Number>
protected PhysicalStore.Factory<N,?> factory()
public final F constant(Number constant)
constant
in interface MultiaryFunction.Constant<N extends Number,F extends org.ojalgo.function.multiary.AbstractMultiary<N,?>>
public final N getConstant()
getConstant
in interface MultiaryFunction.Constant<N extends Number,F extends org.ojalgo.function.multiary.AbstractMultiary<N,?>>
public Access1D<N> getLinearFactors()
getLinearFactors
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
public final void setConstant(Number constant)
setConstant
in interface MultiaryFunction.Constant<N extends Number,F extends org.ojalgo.function.multiary.AbstractMultiary<N,?>>
public final FirstOrderApproximation<N> toFirstOrderApproximation(Access1D<N> arg)
toFirstOrderApproximation
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
public final SecondOrderApproximation<N> toSecondOrderApproximation(Access1D<N> arg)
toSecondOrderApproximation
in interface MultiaryFunction.TwiceDifferentiable<N extends Number>
protected final Scalar<N> getScalarConstant()
Copyright © 2019 Optimatika. All rights reserved.