org.ojalgo.matrix.decomposition
Class SymmetricEvD1<N extends Number>

java.lang.Object
  extended by org.ojalgo.matrix.decomposition.EigenvalueDecomposition<N>
      extended by org.ojalgo.matrix.decomposition.SymmetricEvD1<N>
All Implemented Interfaces:
Eigenvalue<N>, MatrixDecomposition<N>

public abstract class SymmetricEvD1<N extends Number>
extends EigenvalueDecomposition<N>


Method Summary
 boolean compute(Access2D<N> aMtrx)
          Will check for symmetry and then call either computeSymmetric(Access2D) or computeNonsymmetric(Access2D).
 boolean computeNonsymmetric(Access2D<N> aNonsymmetric)
           
 boolean computeSymmetric(Access2D<N> aSymmetric)
           
 boolean equals(MatrixDecomposition<N> aDecomp, NumberContext aCntxt)
           
 boolean equals(MatrixStore<N> aStore, NumberContext aCntxt)
           
 boolean equals(Object someObj)
           
 MatrixStore<N> getD()
          The only requirements on [D] are that it should contain the eigenvalues and that [A][V] = [V][D].
 ComplexNumber getDeterminant()
           A matrix' determinant is the product of its eigenvalues.
 Array1D<ComplexNumber> getEigenvalues()
           Even for real matrices the eigenvalues are potentially complex numbers.
 MatrixStore<N> getInverse()
          The output must be a "right inverse" and a "generalised inverse".
 ComplexNumber getTrace()
          A matrix' trace is the sum of the diagonal elements.
 MatrixStore<N> getV()
          The columns of [V] represent the eigenvectors of [A] in the sense that [A][V] = [V][D].
 MatrixStore<N> invert(MatrixStore<N> aStore)
          A convenience method that produces exactly the same result as if you first call MatrixDecomposition.compute(Access2D) and then MatrixDecomposition.getInverse().
 boolean isAspectRatioNormal()
           
 boolean isComputed()
           
 boolean isFullSize()
           
 boolean isOrdered()
           
 boolean isSolvable()
           
 boolean isSymmetric()
           
 void reset()
          Delete computed results, and resets attributes to default values
 MatrixStore<N> solve(MatrixStore<N> aRHS)
           
 
Methods inherited from class org.ojalgo.matrix.decomposition.EigenvalueDecomposition
getAllPrimitiveGeneral, getAllPrimitiveNonsymmetric, getAllPrimitiveSymmetric, makeBig, makeJama, makePrimitive, reconstruct
 
Methods inherited from class java.lang.Object
getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface org.ojalgo.matrix.decomposition.MatrixDecomposition
equals, getInverse, invert, isComputed
 

Method Detail

compute

public final boolean compute(Access2D<N> aMtrx)
Will check for symmetry and then call either computeSymmetric(Access2D) or computeNonsymmetric(Access2D).

Parameters:
aMtrx - A matrix to decompose
Returns:
true if the computation suceeded; false if not
See Also:
MatrixDecomposition.compute(Access2D)

computeNonsymmetric

public boolean computeNonsymmetric(Access2D<N> aNonsymmetric)
Parameters:
aNonsymmetric - A nonsymmetric (assumed to be) matrix to decompose
Returns:
true if the computation suceeded; false if not

computeSymmetric

public boolean computeSymmetric(Access2D<N> aSymmetric)
Parameters:
aSymmetric - A symmetric (assumed to be) matrix to decompose
Returns:
true if the computation suceeded; false if not

equals

public final boolean equals(MatrixStore<N> aStore,
                            NumberContext aCntxt)

getD

public final MatrixStore<N> getD()
Description copied from interface: Eigenvalue
The only requirements on [D] are that it should contain the eigenvalues and that [A][V] = [V][D]. The ordering of the eigenvalues is not specified.

Returns:
The (block) diagonal eigenvalue matrix.

getDeterminant

public final ComplexNumber getDeterminant()
Description copied from interface: Eigenvalue

A matrix' determinant is the product of its eigenvalues.

Returns:
The matrix' determinant

getEigenvalues

public final Array1D<ComplexNumber> getEigenvalues()
Description copied from interface: Eigenvalue

Even for real matrices the eigenvalues are potentially complex numbers. Typically they need to be expressed as complex numbers when [A] is not symmetric.

The eigenvalues in this array should be ordered in descending order - largest (modulus) first.

Returns:
The eigenvalues in an ordered array.

getTrace

public final ComplexNumber getTrace()
Description copied from interface: Eigenvalue
A matrix' trace is the sum of the diagonal elements. It is also the sum of the eigenvalues. This method should return the sum of the eigenvalues.

Returns:
The matrix' trace

getV

public final MatrixStore<N> getV()
Description copied from interface: Eigenvalue
The columns of [V] represent the eigenvectors of [A] in the sense that [A][V] = [V][D].

Returns:
The eigenvector matrix.

isFullSize

public final boolean isFullSize()
Returns:
True if the implementation generates a full sized decomposition.

isOrdered

public final boolean isOrdered()

isSolvable

public final boolean isSolvable()
Returns:
true if it is ok to call MatrixDecomposition.solve(MatrixStore) (computation was successful); false if not
See Also:
MatrixDecomposition.solve(MatrixStore), MatrixDecomposition.isComputed()

isSymmetric

public final boolean isSymmetric()

reset

public void reset()
Description copied from interface: MatrixDecomposition
Delete computed results, and resets attributes to default values

Specified by:
reset in interface MatrixDecomposition<N extends Number>

solve

public final MatrixStore<N> solve(MatrixStore<N> aRHS)
Specified by:
solve in interface MatrixDecomposition<N extends Number>

equals

public final boolean equals(MatrixDecomposition<N> aDecomp,
                            NumberContext aCntxt)
Specified by:
equals in interface MatrixDecomposition<N extends Number>

equals

public boolean equals(Object someObj)
Overrides:
equals in class Object

getInverse

public final MatrixStore<N> getInverse()
Description copied from interface: MatrixDecomposition
The output must be a "right inverse" and a "generalised inverse".

Specified by:
getInverse in interface MatrixDecomposition<N extends Number>
See Also:
BasicMatrix.invert()

invert

public final MatrixStore<N> invert(MatrixStore<N> aStore)
Description copied from interface: MatrixDecomposition
A convenience method that produces exactly the same result as if you first call MatrixDecomposition.compute(Access2D) and then MatrixDecomposition.getInverse().

Specified by:
invert in interface MatrixDecomposition<N extends Number>

isAspectRatioNormal

public boolean isAspectRatioNormal()

isComputed

public final boolean isComputed()
Specified by:
isComputed in interface MatrixDecomposition<N extends Number>
Returns:
true if computation has been attemped; false if not.
See Also:
MatrixDecomposition.compute(Access2D), MatrixDecomposition.isSolvable()