@Deprecated public abstract class EigenvalueDecomposition<N extends java.lang.Number> extends java.lang.Object implements Eigenvalue<N>
SolverTask.Factory<N extends java.lang.Number>
DeterminantTask.Factory<N extends java.lang.Number>
BIG, COMPLEX, PRIMITIVE
BIG, COMPLEX, PRIMITIVE
Modifier and Type | Method and Description |
---|---|
N |
calculateDeterminant(Access2D<N> matrix)
Deprecated.
|
boolean |
checkAndCompute(Access2D<?> matrix)
Deprecated.
Will check if then the input matrix is hermitian and if it is then compute the decomposition.
|
boolean |
compute(Access2D<?> matrix)
Deprecated.
|
boolean |
equals(java.lang.Object someObj) |
MatrixStore<N> |
getD()
Deprecated.
The only requirements on [D] are that it should contain the eigenvalues and that [A][V] = [V][D].
|
Array1D<ComplexNumber> |
getEigenvalues()
Deprecated.
Even for real matrices the eigenvalues are potentially complex numbers.
|
MatrixStore<N> |
getV()
Deprecated.
The columns of [V] represent the eigenvectors of [A] in the sense that [A][V] = [V][D].
|
MatrixStore<N> |
invert(MatrixStore<N> original)
The output must be a "right inverse" and a "generalised inverse".
|
MatrixStore<N> |
invert(MatrixStore<N> original,
DecompositionStore<N> preallocated)
Implementiong this method is optional.
|
boolean |
isComputed() |
static <N extends java.lang.Number> |
make(Access2D<N> template)
Deprecated.
v38 Use
Eigenvalue.makePrimitive(boolean) instead |
static Eigenvalue<java.math.BigDecimal> |
makeBig()
Deprecated.
v38 Use
Eigenvalue.makeBig() instead |
static Eigenvalue<java.math.BigDecimal> |
makeBig(boolean symmetric)
Deprecated.
v38 Use
Eigenvalue.makeBig(boolean) instead |
static Eigenvalue<ComplexNumber> |
makeComplex()
Deprecated.
v38 Use
Eigenvalue.makeComplex() instead |
static Eigenvalue<ComplexNumber> |
makeComplex(boolean hermitian)
Deprecated.
v38 Use
Eigenvalue.makeComplex(boolean) instead |
static Eigenvalue<java.lang.Double> |
makeJama()
Deprecated.
v38 Use
Eigenvalue.makePrimitive() instead |
static Eigenvalue<java.lang.Double> |
makeJama(boolean symmetric)
Deprecated.
v38 Use
Eigenvalue.makePrimitive(boolean) instead |
static Eigenvalue<java.lang.Double> |
makePrimitive()
Deprecated.
v38 Use
Eigenvalue.makePrimitive() instead |
static Eigenvalue<java.lang.Double> |
makePrimitive(boolean symmetric)
Deprecated.
v38 Use
Eigenvalue.makePrimitive(boolean) instead |
DecompositionStore<N> |
preallocate(Access2D<N> template)
Implementiong this method is optional.
|
DecompositionStore<N> |
preallocate(Access2D<N> templateBody,
Access2D<N> templateRHS)
Implementiong this method is optional.
|
void |
reset()
Deprecated.
Delete computed results, and resets attributes to default values
|
MatrixStore<N> |
solve(Access2D<N> rhs)
Deprecated.
[A][X]=[B] or [this][return]=[rhs]
|
MatrixStore<N> |
solve(Access2D<N> body,
Access2D<N> rhs)
[A][X]=[B] or [body][return]=[rhs]
|
MatrixStore<N> |
solve(Access2D<N> body,
Access2D<N> rhs,
DecompositionStore<N> preallocated)
Implementiong this method is optional.
|
MatrixStore<N> |
solve(Access2D<N> rhs,
DecompositionStore<N> preallocated)
Deprecated.
Implementiong this method is optional.
|
getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
compute, getDeterminant, getTrace, isHermitian, isOrdered, reconstruct
equals, equals, getInverse, getInverse, isComputed, isFullSize, isSolvable
invert, invert, preallocate
preallocate, solve, solve
@Deprecated public static final <N extends java.lang.Number> Eigenvalue<N> make(Access2D<N> template)
Eigenvalue.makePrimitive(boolean)
insteadmake
in interface Eigenvalue<N extends java.lang.Number>
@Deprecated public static final Eigenvalue<java.math.BigDecimal> makeBig()
Eigenvalue.makeBig()
insteadmakeBig
in interface Eigenvalue<N extends java.lang.Number>
@Deprecated public static final Eigenvalue<java.math.BigDecimal> makeBig(boolean symmetric)
Eigenvalue.makeBig(boolean)
insteadmakeBig
in interface Eigenvalue<N extends java.lang.Number>
@Deprecated public static final Eigenvalue<ComplexNumber> makeComplex()
Eigenvalue.makeComplex()
insteadmakeComplex
in interface Eigenvalue<N extends java.lang.Number>
@Deprecated public static final Eigenvalue<ComplexNumber> makeComplex(boolean hermitian)
Eigenvalue.makeComplex(boolean)
insteadmakeComplex
in interface Eigenvalue<N extends java.lang.Number>
@Deprecated public static final Eigenvalue<java.lang.Double> makeJama()
Eigenvalue.makePrimitive()
instead@Deprecated public static final Eigenvalue<java.lang.Double> makeJama(boolean symmetric)
Eigenvalue.makePrimitive(boolean)
instead@Deprecated public static final Eigenvalue<java.lang.Double> makePrimitive()
Eigenvalue.makePrimitive()
insteadmakePrimitive
in interface Eigenvalue<N extends java.lang.Number>
@Deprecated public static final Eigenvalue<java.lang.Double> makePrimitive(boolean symmetric)
Eigenvalue.makePrimitive(boolean)
insteadmakePrimitive
in interface Eigenvalue<N extends java.lang.Number>
public final N calculateDeterminant(Access2D<N> matrix)
calculateDeterminant
in interface DeterminantTask<N extends java.lang.Number>
public final boolean compute(Access2D<?> matrix)
compute
in interface MatrixDecomposition<N extends java.lang.Number>
matrix
- A matrix to decomposepublic final MatrixStore<N> getD()
Eigenvalue
getD
in interface Eigenvalue<N extends java.lang.Number>
public final Array1D<ComplexNumber> getEigenvalues()
Eigenvalue
Even for real matrices the eigenvalues are potentially complex numbers. Typically they need to be expressed as complex numbers when [A] is not symmetric.
The eigenvalues in this array should be ordered in descending order - largest (modulus) first.
getEigenvalues
in interface Eigenvalue<N extends java.lang.Number>
public final MatrixStore<N> getV()
Eigenvalue
getV
in interface Eigenvalue<N extends java.lang.Number>
public final boolean checkAndCompute(Access2D<?> matrix)
HermitianDecomposition
checkAndCompute
in interface HermitianDecomposition<N extends java.lang.Number>
matrix
- A matrix to decomposepublic void reset()
MatrixDecomposition
reset
in interface MatrixDecomposition<N extends java.lang.Number>
public final MatrixStore<N> solve(Access2D<N> rhs)
MatrixDecomposition
solve
in interface MatrixDecomposition<N extends java.lang.Number>
public final MatrixStore<N> solve(Access2D<N> rhs, DecompositionStore<N> preallocated)
MatrixDecomposition
Implementiong this method is optional.
Exactly how a specific implementation makes use of preallocated
is not specified by this
interface. It must be documented for each implementation.
Should produce the same results as calling MatrixDecomposition.solve(Access2D)
.
solve
in interface MatrixDecomposition<N extends java.lang.Number>
rhs
- The Right Hand Side, wont be modfiedpreallocated
- Preallocated memory for the results, possibly some intermediate results. You must
assume this is modified, but you cannot assume it will contain the full/final/correct solution.public boolean equals(java.lang.Object someObj)
equals
in class java.lang.Object
public final MatrixStore<N> invert(MatrixStore<N> original)
InverterTask
BasicMatrix.invert()
public final MatrixStore<N> invert(MatrixStore<N> original, DecompositionStore<N> preallocated)
InverterTask
Implementiong this method is optional.
Exactly how a specific implementation makes use of preallocated
is not specified by this
interface. It must be documented for each implementation.
Should produce the same results as calling InverterTask.invert(MatrixStore)
.
preallocated
- Preallocated memory for the results, possibly some intermediate results. You must
assume this is modified, but you cannot assume it will contain the full/final/correct solution.public final MatrixStore<N> solve(Access2D<N> body, Access2D<N> rhs)
SolverTask
public final MatrixStore<N> solve(Access2D<N> body, Access2D<N> rhs, DecompositionStore<N> preallocated)
SolverTask
Implementiong this method is optional.
Exactly how a specific implementation makes use of preallocated
is not specified by this
interface. It must be documented for each implementation.
Should produce the same results as calling SolverTask.solve(Access2D, Access2D)
.
rhs
- The Right Hand Side, wont be modfiedpreallocated
- Preallocated memory for the results, possibly some intermediate results. You must
assume this is modified, but you cannot assume it will contain the full/final/correct solution.public final DecompositionStore<N> preallocate(Access2D<N> template)
InverterTask
Implementiong this method is optional.
Will create a DecompositionStore instance suitable for use withInverterTask.invert(MatrixStore, DecompositionStore)
. When solving an equation system [A][X]=[B]
([mxn][nxb]=[mxb]) the preallocated memory/matrix will typically be either mxb or nxb (if A is square
then there is no doubt).preallocate
in interface InverterTask<N extends java.lang.Number>
public final DecompositionStore<N> preallocate(Access2D<N> templateBody, Access2D<N> templateRHS)
SolverTask
Implementiong this method is optional.
Will create a DecompositionStore instance suitable for use withSolverTask.solve(Access2D, Access2D, DecompositionStore)
. When solving an equation system [A][X]=[B]
([mxn][nxb]=[mxb]) the preallocated memory/matrix will typically be either mxb or nxb (if A is square
then there is no doubt).preallocate
in interface SolverTask<N extends java.lang.Number>
public final boolean isComputed()
isComputed
in interface MatrixDecomposition<N extends java.lang.Number>
MatrixDecomposition.compute(Access2D)
,
MatrixDecomposition.isSolvable()