@Deprecated public final class RawLU extends java.lang.Object implements LU<java.lang.Double>
InverterTask.Factory<N extends java.lang.Number>
SolverTask.Factory<N extends java.lang.Number>
DeterminantTask.Factory<N extends java.lang.Number>
BIG, COMPLEX, PRIMITIVE
BIG, COMPLEX, PRIMITIVE
BIG, COMPLEX, PRIMITIVE
Constructor and Description |
---|
RawLU()
Deprecated.
Not recommended to use this constructor directly.
|
Modifier and Type | Method and Description |
---|---|
boolean |
compute(Access2D<?> matrix)
Deprecated.
Use a "left-looking", dot-product, Crout/Doolittle algorithm, essentially copied from JAMA.
|
boolean |
computeWithoutPivoting(MatrixStore<?> matrix)
Deprecated.
The normal
MatrixDecomposition.compute(Access2D) method must handle cases where pivoting is required. |
boolean |
equals(MatrixStore<java.lang.Double> aStore,
NumberContext context)
Deprecated.
|
java.lang.Double |
getDeterminant()
Deprecated.
|
MatrixStore<java.lang.Double> |
getInverse()
Deprecated.
The output must be a "right inverse" and a "generalised inverse".
|
MatrixStore<java.lang.Double> |
getInverse(DecompositionStore<java.lang.Double> preallocated)
Deprecated.
Implementiong this method is optional.
|
MatrixStore<java.lang.Double> |
getL()
Deprecated.
|
int[] |
getPivotOrder()
Deprecated.
This can be used to create a [P] matrix using IdentityStore in combination with
RowsStore or ColumnsStore.
|
int |
getRank()
Deprecated.
|
MatrixStore<java.lang.Double> |
getU()
Deprecated.
http://en.wikipedia.org/wiki/Row_echelon_form
This is the same as [D][U]. |
MatrixStore<java.lang.Double> |
invert(MatrixStore<java.lang.Double> original)
The output must be a "right inverse" and a "generalised inverse".
|
MatrixStore<java.lang.Double> |
invert(MatrixStore<java.lang.Double> original,
DecompositionStore<java.lang.Double> preallocated)
Implementiong this method is optional.
|
boolean |
isComputed() |
boolean |
isFullSize()
Deprecated.
|
boolean |
isSolvable()
Deprecated.
|
boolean |
isSquareAndNotSingular()
Deprecated.
|
DecompositionStore<N> |
preallocate(Access2D<N> template)
Implementiong this method is optional.
|
DecompositionStore<N> |
preallocate(Access2D<N> templateBody,
Access2D<N> templateRHS)
Implementiong this method is optional.
|
void |
reset()
Deprecated.
Delete computed results, and resets attributes to default values
|
MatrixStore<java.lang.Double> |
solve(Access2D<java.lang.Double> rhs)
Deprecated.
[A][X]=[B] or [this][return]=[rhs]
|
MatrixStore<java.lang.Double> |
solve(Access2D<java.lang.Double> body,
Access2D<java.lang.Double> rhs)
[A][X]=[B] or [body][return]=[rhs]
|
MatrixStore<java.lang.Double> |
solve(Access2D<java.lang.Double> body,
Access2D<java.lang.Double> rhs,
DecompositionStore<java.lang.Double> preallocated)
Implementiong this method is optional.
|
MatrixStore<java.lang.Double> |
solve(Access2D<java.lang.Double> rhs,
DecompositionStore<java.lang.Double> preallocated)
Deprecated.
Makes no use of
preallocated at all. |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
make, makeBig, makeComplex, makePrimitive, reconstruct
calculateDeterminant
equals, isComputed
invert, invert, preallocate
preallocate, solve, solve
public RawLU()
public boolean compute(Access2D<?> matrix)
compute
in interface MatrixDecomposition<java.lang.Double>
matrix
- A matrix to decomposeMatrixDecomposition.compute(org.ojalgo.access.Access2D)
public boolean computeWithoutPivoting(MatrixStore<?> matrix)
LU
MatrixDecomposition.compute(Access2D)
method must handle cases where pivoting is required. If you know
that pivoting is not needed you may call this method instead - it's faster.computeWithoutPivoting
in interface LU<java.lang.Double>
public boolean equals(MatrixStore<java.lang.Double> aStore, NumberContext context)
equals
in interface MatrixDecomposition<java.lang.Double>
public java.lang.Double getDeterminant()
getDeterminant
in interface LDU<java.lang.Double>
public MatrixStore<java.lang.Double> getInverse()
MatrixDecomposition
getInverse
in interface MatrixDecomposition<java.lang.Double>
BasicMatrix.invert()
public MatrixStore<java.lang.Double> getL()
public int[] getPivotOrder()
LU
getPivotOrder
in interface LU<java.lang.Double>
public MatrixStore<java.lang.Double> getU()
LU
getU
in interface LU<java.lang.Double>
LU.getPivotOrder()
,
LU.getL()
public boolean isFullSize()
isFullSize
in interface MatrixDecomposition<java.lang.Double>
public boolean isSolvable()
isSolvable
in interface MatrixDecomposition<java.lang.Double>
MatrixDecomposition.solve(Access2D)
,
MatrixDecomposition.isComputed()
public boolean isSquareAndNotSingular()
isSquareAndNotSingular
in interface LU<java.lang.Double>
public MatrixStore<java.lang.Double> solve(Access2D<java.lang.Double> rhs, DecompositionStore<java.lang.Double> preallocated)
preallocated
at all. Simply delegates to MatrixDecomposition.solve(Access2D)
.solve
in interface MatrixDecomposition<java.lang.Double>
rhs
- The Right Hand Side, wont be modfiedpreallocated
- Preallocated memory for the results, possibly some intermediate results. You must
assume this is modified, but you cannot assume it will contain the full/final/correct solution.MatrixDecomposition.solve(Access2D,
org.ojalgo.matrix.decomposition.DecompositionStore)
public void reset()
MatrixDecomposition
reset
in interface MatrixDecomposition<java.lang.Double>
public final MatrixStore<java.lang.Double> solve(Access2D<java.lang.Double> rhs)
MatrixDecomposition
solve
in interface MatrixDecomposition<java.lang.Double>
public MatrixStore<java.lang.Double> getInverse(DecompositionStore<java.lang.Double> preallocated)
MatrixDecomposition
Implementiong this method is optional.
Exactly how a specific implementation makes use of preallocated
is not specified by this
interface. It must be documented for each implementation.
Should produce the same results as calling MatrixDecomposition.getInverse()
.
getInverse
in interface MatrixDecomposition<java.lang.Double>
preallocated
- Preallocated memory for the results, possibly some intermediate results. You must
assume this is modified, but you cannot assume it will contain the full/final/correct solution.public final MatrixStore<java.lang.Double> invert(MatrixStore<java.lang.Double> original)
InverterTask
BasicMatrix.invert()
public final MatrixStore<java.lang.Double> invert(MatrixStore<java.lang.Double> original, DecompositionStore<java.lang.Double> preallocated)
InverterTask
Implementiong this method is optional.
Exactly how a specific implementation makes use of preallocated
is not specified by this
interface. It must be documented for each implementation.
Should produce the same results as calling InverterTask.invert(MatrixStore)
.
preallocated
- Preallocated memory for the results, possibly some intermediate results. You must
assume this is modified, but you cannot assume it will contain the full/final/correct solution.public final MatrixStore<java.lang.Double> solve(Access2D<java.lang.Double> body, Access2D<java.lang.Double> rhs)
SolverTask
public final MatrixStore<java.lang.Double> solve(Access2D<java.lang.Double> body, Access2D<java.lang.Double> rhs, DecompositionStore<java.lang.Double> preallocated)
SolverTask
Implementiong this method is optional.
Exactly how a specific implementation makes use of preallocated
is not specified by this
interface. It must be documented for each implementation.
Should produce the same results as calling SolverTask.solve(Access2D, Access2D)
.
rhs
- The Right Hand Side, wont be modfiedpreallocated
- Preallocated memory for the results, possibly some intermediate results. You must
assume this is modified, but you cannot assume it will contain the full/final/correct solution.public final DecompositionStore<N> preallocate(Access2D<N> template)
InverterTask
Implementiong this method is optional.
Will create a DecompositionStore instance suitable for use withInverterTask.invert(MatrixStore, DecompositionStore)
. When solving an equation system [A][X]=[B]
([mxn][nxb]=[mxb]) the preallocated memory/matrix will typically be either mxb or nxb (if A is square
then there is no doubt).preallocate
in interface InverterTask<N extends java.lang.Number>
public final DecompositionStore<N> preallocate(Access2D<N> templateBody, Access2D<N> templateRHS)
SolverTask
Implementiong this method is optional.
Will create a DecompositionStore instance suitable for use withSolverTask.solve(Access2D, Access2D, DecompositionStore)
. When solving an equation system [A][X]=[B]
([mxn][nxb]=[mxb]) the preallocated memory/matrix will typically be either mxb or nxb (if A is square
then there is no doubt).preallocate
in interface SolverTask<N extends java.lang.Number>
public final boolean isComputed()
isComputed
in interface MatrixDecomposition<N extends java.lang.Number>
MatrixDecomposition.compute(Access2D)
,
MatrixDecomposition.isSolvable()