public final class PoissonProcess extends Object
RandomProcess.SimulationResults
Modifier | Constructor and Description |
---|---|
protected |
PoissonProcess(double rate) |
Modifier and Type | Method and Description |
---|---|
boolean |
addObservation(Double x,
double y) |
Poisson |
getDistribution(double evaluationPoint) |
double |
getExpected()
Equivalent to calling
RandomProcess.getDistribution(double) with argumant 1.0 , and
then Distribution.getExpected() . |
double |
getLowerConfidenceQuantile(double confidence)
The same thing can be achieved by first calling
RandomProcess.getDistribution(double) with
argumant 1.0 , and then ContinuousDistribution.getQuantile(double) (but with
different input argument). |
protected double |
getNormalisedRandomIncrement() |
double |
getStandardDeviation()
Equivalent to calling
RandomProcess.getDistribution(double) with argumant 1.0 , and
then Distribution.getStandardDeviation() . |
Exponential |
getTimeBetweenConsecutiveEvents() |
double |
getUpperConfidenceQuantile(double confidence)
The same thing can be achieved by first calling
RandomProcess.getDistribution(double) with
argumant 1.0 , and then ContinuousDistribution.getQuantile(double) (but with
different input argument). |
double |
getValue() |
double |
getVariance()
Equivalent to calling
RandomProcess.getDistribution(double) with argumant 1.0 , and
then Distribution.getVariance() . |
protected void |
setObservations(Collection<? extends ComparableToDouble<Double>> c) |
void |
setValue(double newValue) |
RandomProcess.SimulationResults |
simulate(int numberOfRealisations,
int numberOfSteps,
double stepSize) |
protected double |
step(double currentValue,
double stepSize,
double normalisedRandomIncrement) |
public Poisson getDistribution(double evaluationPoint)
evaluationPoint
- How far into the future?public Exponential getTimeBetweenConsecutiveEvents()
protected double getNormalisedRandomIncrement()
protected double step(double currentValue, double stepSize, double normalisedRandomIncrement)
public final boolean addObservation(Double x, double y)
public final double getExpected()
RandomProcess.getDistribution(double)
with argumant 1.0
, and
then Distribution.getExpected()
.public final double getLowerConfidenceQuantile(double confidence)
RandomProcess.getDistribution(double)
with
argumant 1.0
, and then ContinuousDistribution.getQuantile(double)
(but with
different input argument).public final double getStandardDeviation()
RandomProcess.getDistribution(double)
with argumant 1.0
, and
then Distribution.getStandardDeviation()
.public final double getUpperConfidenceQuantile(double confidence)
RandomProcess.getDistribution(double)
with
argumant 1.0
, and then ContinuousDistribution.getQuantile(double)
(but with
different input argument).public final double getValue()
public final double getVariance()
RandomProcess.getDistribution(double)
with argumant 1.0
, and
then Distribution.getVariance()
.public final void setValue(double newValue)
public final RandomProcess.SimulationResults simulate(int numberOfRealisations, int numberOfSteps, double stepSize)
simulate
in interface RandomProcess<D extends Distribution>
protected final void setObservations(Collection<? extends ComparableToDouble<Double>> c)
Copyright © 2019 Optimatika. All rights reserved.