public class TDistribution extends RandomNumber
BasicFunction.Differentiable<N extends Number,F extends BasicFunction>, BasicFunction.Integratable<N extends Number,F extends BasicFunction>, BasicFunction.PlainUnary<T,R>
Constructor and Description |
---|
TDistribution(double degreesOfFreedom) |
Modifier and Type | Method and Description |
---|---|
protected double |
generate() |
double |
getDensity(double value)
In probability theory, a probability density function (pdf), or density of a continuous random variable
is a function that describes the relative likelihood for this random variable to occur at a given
point.
|
double |
getDistribution(double value)
In probability theory and statistics, the cumulative distribution function (CDF), or just distribution
function, describes the probability that a real-valued random variable X with a given probability
distribution will be found at a value less than or equal to x.
|
double |
getExpected() |
double |
getLowerConfidenceQuantile(double confidence) |
double |
getQuantile(double probability)
The quantile function, for any distribution, is defined for real variables between zero and one and is
mathematically the inverse of the cumulative distribution function.
|
double |
getUpperConfidenceQuantile(double confidence) |
double |
getVariance()
Subclasses must override either getStandardDeviation() or getVariance()!
|
static TDistribution |
make(int degreesOfFreedom) |
checkProbabilty, doubleValue, floatValue, getStandardDeviation, intValue, invoke, longValue, newSampleSet, random, setSeed, toString
byteValue, shortValue
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getProbability
getStandardDeviation
andThen, get, getAsDouble
public static TDistribution make(int degreesOfFreedom)
public double getDensity(double value)
ContinuousDistribution
value
- xpublic double getDistribution(double value)
ContinuousDistribution
value
- xpublic double getExpected()
public double getQuantile(double probability)
ContinuousDistribution
probability
- P(<=x)public double getVariance()
RandomNumber
getVariance
in interface Distribution
getVariance
in class RandomNumber
Distribution.getStandardDeviation()
,
Distribution.getVariance()
public final double getLowerConfidenceQuantile(double confidence)
public final double getUpperConfidenceQuantile(double confidence)
protected double generate()
generate
in class RandomNumber
Copyright © 2019 Optimatika. All rights reserved.