public abstract class QuadraticSolver extends BaseSolver
min 1/2 [X]T[Q][X] - [C]T[X]
when [AE][X] == [BE]
and [AI][X] <= [BI]
The matrix [Q] is assumed to be symmetric (it must be made that way) and:
You construct instances by using the QuadraticSolver.Builder class. It will return an appropriate subclass for you. It's recommended that you first create a ExpressionsBasedModel and feed that to the QuadraticSolver.Builder. Alternatively you can directly call ExpressionsBasedModel.getDefaultSolver() or even ExpressionsBasedModel.minimise() or ExpressionsBasedModel.maximise() on the model.
Modifier and Type | Class and Description |
---|---|
static class |
QuadraticSolver.Builder |
Optimisation.Constraint, Optimisation.Model, Optimisation.Objective, Optimisation.Options, Optimisation.Result, Optimisation.Solver, Optimisation.State
options
Modifier and Type | Method and Description |
---|---|
static QuadraticSolver |
make(ExpressionsBasedModel aModel) |
Optimisation.Result |
solve(Optimisation.Result kickStarter) |
solve, toString
public static QuadraticSolver make(ExpressionsBasedModel aModel)
public final Optimisation.Result solve(Optimisation.Result kickStarter)